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Abstract

In this paper, we introduce a new method for solving efficiently the Fokker–Planck equation arising in the simu-

lation of dilute polymeric solutions. For a two-dimensional FENE (Finitely Extensible Nonlinear Elastic) model, the

structure of the Fokker–Planck equation is used to design a fast solver. The resulting equations are discretized with a

spectral/spectral element method. Application of the method to flow of a FENE fluid past a confined cylinder dem-

onstrates readily the advantages of the proposed scheme over traditional stochastic simulations.
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1. Introduction

In this paper, we are concerned with the simulation of flows of dilute polymeric solutions in complex

geometries. The polymeric molecules are represented through kinetic theory, in which case the solvent is

treated as a viscous continuum which acts on the macromolecules through thermal fluctuations and viscous

drag. One of the simplest kinetic theory models represents the polymeric molecules by dumbbells which

consist of two beads connected by a spring (see [3]). In this approach, the statistics of the configuration

vector q determining the direction and the elongation of the spring have to be computed. Kinetic theory

provides a partial differential equation (the Fokker–Planck (FP) equation 1) for the probability density
wðt; x; qÞ of q and an expression for the polymeric extra-stress s in the form of the expectation of certain

functions of q. One can also obtain an Itôo stochastic differential equation for the random process q, which is

formally equivalent to the FP equation. For some polymeric models, it is possible to derive a constitutive
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1 The FP equation is also known as the diffusion equation in polymeric kinetic theory or the Smoluchowski equation in the theory of

Brownian motion.
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equation for the extra-stress and therefore bypass the resolution of equations describing the polymer at a

microscopic level (the interested reader can find in [22] an extensive review of numerical methods well suited

for models with closed-form constitutive equations of differential and integral type). However, such models

are usually unable to predict certain complex behaviour of polymeric fluids, such as the hysteresis phe-

nomenon, for example [24].

One is therefore led to construct efficient numerical techniques to simulate models for which no con-

stitutive equation exists. One can start from the stochastic differential equation for q, introduce a large

number of pseudo-random vector fields qm (typically several thousand or possibly several hundred when
variance reduction techniques are used, see [4,5]) and solve for each of them a partial differential equation

that can be discretized by finite elements or any other numerical technique (CONNFFESSIT approach, see

[20]). All this must be coupled with the momentum and continuity equations for the velocity and pressure.

It is easy to see that such a technique is extremely expensive, even in one of its most efficient versions, the

Brownian configuration fields method [17].

One can try to alleviate the three main disadvantages of the Brownian configuration fields method,

which are large CPU cost, huge memory requirements and the presence of statistical noise in the computed

polymeric stress, by solving directly the FP equation for wðt; x; qÞ instead of the stochastic differential
equation for q. This is what we will do in this paper. Note that the method presented here is well suited only

for polymeric models having low dimensional configuration space. Indeed, in the case of more complex

models like the Rouse chain consisting of N P 3 beads and N � 1 springs, the probability density should be

solved in a high dimensional space ðt; x; q1; . . . ; qN�1Þ instead of ðt; x; qÞ, making the solution of the FP

equation hardly tractable.

A review of the literature reveals that very little has been done in order to advocate this approach, mainly

due to the lack of efficient numerical techniques to solve the FP equation. Starting with the pioneer work of

Warner in 1972 [28], the FP equation was used there to solve the steady-state shearing flow and small-
amplitude oscillatory shearing flow of a FENE fluid. It was only 13 years later, in 1985, that Fan [13]

improved the original idea of Warner by requiring that the probability density function be smooth at the

origin, leading to more accurate results. The dilute multibead-rod model was the model of choice of Fan in

1989 in a series of two papers [14,15]. The second paper is, to our knowledge, the first attempt in the

published literature to use the FP equation for flows in complex geometries. Although simplifying as-

sumptions had to be made (convective terms neglected in the FP equation), the computational difficulty at

that time must not be underestimated. In a recent work by a group in MIT [1], the start-up of steady shear

flow for dilute solutions of rigid rod-like macromolecules was also treated with the FP equation using
Daubechies wavelets for the discretization. In [19], this method was used to simulate the dynamics of both

the rigid dumbbell model and the Doi model for monodomain liquid crystalline polymers in a complex flow

environment (see also [25]). For the numerical simulations of concentrated polymer solutions, the interested

reader is referred to the recent paper of Lozinski et al. [18] for the details.

In this paper, we choose the FENE dumbbell model [28] of dilute polymer solutions. No constitutive

equation exists for this model. Contrary to [18], we use here an implicit time-marching for the FP equation

that enables us to weaken significantly the stability restriction on the time-step. The first version of our

method has been presented in a short paper [7]. In the present paper, we use some properties of the FP
equation to reduce significantly the computational cost. We restrict ourselves here to planar flows and we

assume, for the sake of simplicity, that the dumbbells lie also in the plane of the flow. This is not a

physically reasonable assumption a priori, and we use it primarily to illustrate our numerical method, which

can be extended to three-dimensional FENE dumbbells in a future work. We note however that using 2D

FENE dumbbells does not deteriorate significantly the predictions of the polymer stress in shear flows [7].

The paper is organized as follows. The next section is a brief description on how dilute polymeric liquids

may be modelled. Section 3 presents in more detail the stochastic approach and the discretization of the

resulting equations. A novel numerical scheme for the FP equation, which leads to a fast solver for this
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equation is then presented in Section 4. Then, in Section 5 we demonstrate the efficiency of our numerical

scheme by solving the benchmark problem of the flow past a cylinder in a channel and compare our results

with more conventional stochastic simulations and the method of [7]. Finally, in Section 6 we state some

conclusions.
2. Problem description

We consider a solvent, which is assumed to be incompressible and isothermal, and we restrict ourselves

to the case of inertialess flows (zero Reynolds number). For such a fluid, the mass and momentum con-

servation equations take the form of the Stokes system that can be written as

0 ¼ �rp þ 2gsr � eðuÞ þ r � s; ð1Þ
r � u ¼ 0; ð2Þ

where u denotes the fluid velocity, p is the pressure, s is the polymeric contribution to the Cauchy stress

tensor, eðuÞ ¼ 1
2
ðruþruTÞ is the rate-of-strain tensor and gs is the solvent viscosity.

In this paper, we follow the simplest micro-mechanical approach to model the polymer molecules in a
dilute solution (the dumbbell model), in which the polymers are represented by two beads connected by a

spring (see Fig. 1) and the configuration vector qðtÞ describes the orientation and the elongation of such

a dumbbell as it moves along its trajectory xðtÞ. The force of the spring is governed by some law that should

be derived from physical arguments. We choose here the popular FENE model, in which the maximum

extensibility of the dumbbell is fixed at some value determined by the dimensionless parameter b and the

spring force, after some scaling, takes the simple form

FðqÞ ¼ q

1� ðjqj2=bÞ
; ð3Þ

where both F and q are dimensionless vectors.

The configuration vector qðt; xÞ of a dumbbell located at x at time t satisfies the following stochastic
differential equation (see [20] for details):

dqðx; tÞ þ uðx; tÞ � rqðx; tÞdt ¼ ruðx; tÞ � qðx; tÞ
�

� 1

2k
Fðqðx; tÞÞ

�
dt þ

ffiffiffi
1

k

r
dWðx; tÞ; ð4Þ
Fig. 1. Description of a single dumbbell placed in the fluid in XðtÞ.
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where ðruÞij ¼ oui=oxj, k is the relaxation time of the fluid, Wðx; tÞ is the Wiener random process that

accounts for the Brownian forces acting on each bead. Eq. (4) should be understood as the Itôo ordinary

stochastic differential equations along the particle paths since the dumbbells� centres of mass are supposed

to follow the particles of the solvent fluid.

Alternatively, one can describe the dynamics of polymers in terms of the probability density function

(pdf) wðt; x; qÞ of the random process qðt; xÞ that can be interpreted as follows: wðt; x; qÞdq is the probability

that a dumbbell at position x and at time t is to be found with the configuration vector in the box ½q; qþ dq
.
As is well known (see [20, Section 3.3]), every Itôo stochastic differential equation can be associated with the
partial differential equation (the FP equation) for the pdf. In particular, Eq. (4) of the FENE dumbbell

model, implies the following FP equation for wðt; x; qÞ

ow
ot

þ u � rw þrq � ru � q
��

� 1

2k
FðqÞ

�
w

�
¼ 1

2k
Dqw; ð5Þ

where we use the subscript q for operators acting in configuration space and no subscript for operators

acting in physical space.

Once the statistical information about the distribution of q is known, the extra-stress tensor sðt; xÞ
(which is used in the source term of the momentum equation (1)) can be computed by the Kramers ex-

pression (see [3, p. 69])

sðx; tÞ ¼
gp

k
bþ 4

b
ð�Iþ Eðqðx; tÞ � Fðqðx; tÞÞÞÞ; ð6Þ

where the symbol � denotes the tensor product of two vectors and Eð�Þ is the expectation. The prefactor in

(6) is chosen so that the viscosity in the linear regime (low shear rates) is equal to gs þ gp (for the 2D case).

The parameter gp is referred to as the zero shear-rate polymeric viscosity.

The two different (although formally equivalent) approaches described above lead to different numerical

methods. We shall present stochastic numerical simulations based on Eq. (4) in the following section.

Section 4 will be devoted to the direct solution of the FP Eq. (5). Note that in both cases, the velocity

gradient is calculated at each time-step and at every grid point from the latest known velocity obtained

as a solution to (1) and (2), so we can suppose in the sequel that the velocity field and its gradient are
given.
3. Stochastic simulation (Brownian configuration field method)

3.1. Discretization of the stochastic equation

Denoting the discrete times iDt by ti, the properties of the Wiener process (see [16], for example) imply

Wðt0Þ ¼ 0 and

WðtiÞ ¼Wðti�1Þ þ
ffiffiffiffiffi
Dt

p
DWðtiÞ; ð7Þ

where DWðtiÞ are mutually independent random vectors having probability distribution Nð0; 1Þ.
Using a simple backward Euler scheme for the time discretization of (4), we obtain the following sto-

chastic partial differential equation:

qðx; tiþ1Þ � qðx; tiÞ
Dt

þ uðx; tiÞ � rqðx; tiþ1Þ � ruðx; tiÞqðx; tiþ1Þ þ
1

2k
Fðqðx; tiÞÞ ¼

ffiffiffiffiffiffiffiffi
1

kDt

r
DWðtiÞ: ð8Þ
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Note that the increments of the discrete Wiener process in (8) do not depend on x although the original

stochastic differential equation (4) assumes an independent Wiener process on each particle path. We can

afford this simplification since we are interested only in some averages of random vectors qðx; tiÞ. This idea is

the basis of the Brownian configuration fieldmethod proposed in [17] (see also [27]), and it allows us to reduce

drastically the computational cost as well as the random noise in averaged quantities like the extra-stress.

When a Monte-Carlo approach is used for solving (8) a large number of pseudo-random vectors

fDWmðtiÞg16m6M are generated and Eq. (8) has to be solved M times to compute the realizations of q (also

known as configuration fields) fqmðx; tiþ1Þg16m6M for each DWmðtiÞ at the right-hand side. Note that the
vectors DWmðtiÞ are mutually independent in time, therefore a new set of pseudo-random numbers needs to

be generated at each time-step. Initially, the fluid is at rest so that the equilibrium extra-stress tensor must

be zero. This is done by generating M initial pseudo-random vectors with the following distribution (for the

2D case):

weqðqÞ ¼
bþ 2

2pb
1

 
� jqj2

b

!b=2

: ð9Þ

To prevent the norm of the vectors qm from exceeding
ffiffiffi
b

p
that can result in divergence of the scheme, one

can either use rejections techniques or treat the FðqÞ term in an implicit way (see [20, Section 4.3.2]). We

implement this latter idea using a time splitting technique for Eq. (8):

eqqmðx; tiÞ � qmðx; ti�1Þ
Dt

þ uðx; tiÞ � reqqmðx; tiÞ ¼ 0; ð10Þ
qmðx; tiþ1Þ � eqqmðx; tiÞ
Dt

þ 1

2k
Fðqmðx; tiþ1ÞÞ ¼ ruðx; tiÞeqqmðx; tiÞ þ ffiffiffiffiffiffiffiffi

1

kDt

r
DWmðtiÞ: ð11Þ

The first equation should be solved by a numerical method appropriate for hyperbolic PDEs and (11) can

be solved independently at every grid point. To see that this splitting prevents the norm of the vectors qm
from exceeding

ffiffiffi
b

p
, we rearrange (11) and use (3) to arrive at

1

Dt

 
þ 1

2k
1

1� ðjqmðx; tiþ1Þj2=bÞ

!
qmðx; tiþ1Þ ¼ smðx; tiÞ; ð12Þ

where

smðx; tiÞ ¼
eqqmðx; tiÞ

Dt
þruðx; tiÞeqqmðx; tiÞ þ ffiffiffiffiffiffiffiffi

1

kDt

r
DWmðtiÞ

is a known vector since eqqmðx; tiÞ has been computed from Eq. (10). We put sm ¼ jsmðx; tiÞj and

qm ¼ jqmðx; tiþ1Þj and derive from (12) the cubic polynomial equation for qm

q3
m � Dtsmq2

m � b
Dt
2k

�
þ 1

�
qm þ Dtsmb ¼ 0: ð13Þ

This equation can be shown to possess one root that satisfies 06 qm <
ffiffiffi
b

p
. Having determined this root, the

configuration vector qmðx; tiþ1Þ is simply

qmðx; tiþ1Þ ¼
1

Dt

�
þ 1

2k
1

1� ðq2
m=bÞ

��1

smðx; tiÞ: ð14Þ
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3.2. Computation of the extra-stress

Having computed a large number of realizations fqmðx; tiÞg16m6M that experience different uncorrelated

Wiener processes fWmðtÞg16m6M as described above, we are in position to determine the polymeric extra-

stress s which will then be used as a source term for Eq. (1). We use a straightforward approximation to (6)

that is given by

sðx; tiÞ ¼
gp

k
bþ 4

b

 
� Iþ 1

M

XM
m¼1

qmðx; tiÞ � Fðqmðx; tiÞÞ
!
: ð15Þ

However, computing the extra-stress with (15) will give solutions that converge at a slow rate Oð1=
ffiffiffiffiffi
M

p
Þ

typical of stochastic simulations. Variance reduction techniques make it possible to reduce the noise level

[5]; however, the efficiency of such techniques may be less effective as the Deborah number increases [4]. In

the following section, we will see how this can be avoided by considering an approach based on the direct

solution of the FP equation (5).
4. Direct simulation (FP equation)

4.1. The basic idea

In this approach, we seek the pdf wðt; x; qÞ by solving (5) directly. But first, we give the main ideas that

will be developed in the following sections. For reasons that will be explained later we will use a variable

aðt; x; qÞ instead of wðt; x; qÞ. The equation for aðt; x; qÞ can be formally rewritten as

oa
ot

þ Axa þ ou1

ox1
Bqa þ ou1

ox2
Cqa þ ou2

ox1
Dqa ¼ 0; ð16Þ

where Ax ¼ u � r is a linear operator acting only in physical space whereas Bq, Cq and Dq are linear op-

erators acting only in configuration space. Therefore, (16) lends itself to a time splitting, which, for a first
order backward Euler method leads to

eaai � ai

Dt
þ ou1

ox1
Bqeaai þ ou1

ox2
Cqeaai þ ou2

ox1
Dqeaai ¼ 0; ð17Þ
aiþ1 � eaai

Dt
þ Axa

iþ1 ¼ 0: ð18Þ

Doing so, Eq. (17) is first solved in configuration space for the auxiliary variable eaai, separately at every grid

point of physical space. It is then injected into Eq. (18), which should be solved in physical space in a similar

way to Eq. (10). Although the scheme (17) and (18) can be solved directly as was done in [7], such an
approach might be quite expensive for non-trivial geometries. To see that, we note that after discretization

and keeping the same notations for the discretized and continuous operators, the discrete solutions of (17)

and (18) are, respectively,

eaai ¼ I

�
þ Dt

ou1

ox1
Bq

	
þ ou1

ox2
Cq þ

ou2

ox1
Dq


��1

ai; ð19Þ
aiþ1 ¼ ðIþ DtAxÞ�1eaai: ð20Þ
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We note that ðIþ DtAxÞ�1
is the same operator for all the components of a in configuration space and

therefore it can be computed once and applied to all of them. On the other hand, although (19) is solved

only in configuration space, the coefficients which multiply Bq, Cq and Dq vary in physical space. Fur-

thermore, those coefficients change with time and so it is not possible to compute and store

I

�
þ Dt

ou1

ox1
Bq

	
þ ou1

ox2
Cq þ

ou2

ox1
Dq


��1

once for all and a linear system should be solved at every grid point at each time-step. We will term the

scheme (17) and (18) the ‘‘slow solver’’ in what follows. The following paragraph gives the outline of the

fast solver.
As will be shown in the following subsections, one can construct a time discretization for the configu-

rational part of the FP equation, which can be used instead of (17) and which can be written, after dis-

cretization, in the form

eaai ¼ FqðIþ kDtEqÞ�1
Gqa

i; ð21Þ

where the coefficient k varies in physical space and Eq is a constant matrix. Fq and Gq are some matrices

varying in physical space, but such that a matrix–vector product with them can be computed approximately
with the same (or smaller) computational price as a matrix-vector product with a constant matrix. What is

important here, is that instead of having three coefficients varying in physical space (namely ou1=ox1,
ou1=ox2 and ou2=ox1), we now have only one (namely k), and this allows us to solve (21) efficiently. To see

that, we diagonalize Eq; more specifically we call D the diagonal matrix formed with the eigenvalues of Eq.

Then, there exists an invertible matrix P (formed by the eigenvectors of Eq) such that Eq ¼ PDP�1 and we

can rewrite (21) as

eaai ¼ FqðPP�1 þ kDtPDP�1Þ�1
Gqa

i ¼ FqPðIþ kDtDÞ�1
P�1Gqa

i: ð22Þ

We can compute the matrices P, P�1 and D once for all. Even if k varies in physical space, ðIþ kDtDÞ is a

diagonal matrix which is cheap to invert. Assume a size N for the matrices appearing in (19) or (22) and that

these matrices are full. Solving (19) would require the solution of a linear system at each time-step and each

grid point in physical space so the cost would be OðN 3Þ per time-step and grid point. On the other hand, eaai

obtained by (22) is the result of matrix–vector multiplication with FqP and P�1Gq, so the cost would only be

OðN 2Þ under the hypothesis on Fq and Gq mentioned above.

4.2. The Fokker–Planck equation in polar coordinates

The norm of the configuration vectors cannot exceed
ffiffiffi
b

p
for the FENE model, hence the pdf should be

defined in the disc jqj <
ffiffiffi
b

p
. Therefore, it seems natural to use polar coordinates ðr; hÞ to represent q as

q1 ¼ r cos h; q2 ¼ r sin h with r 2 ½0;
ffiffiffi
b

p
½ and h 2 ½0; 2p½: ð23Þ

We give now a detailed expression of (5) in variables ðr; hÞ:

ow
ot

þ u � rw ¼ �rb1ðj; hÞ
ow
or

� b2ðj; hÞ
ow
oh

þ 1

2k
br

b� r2

�
þ 1

r

�
ow
or

þ b2

kðb� r2Þ2
w þ 1

2k
o2w
or2

þ 1

2kr2
o2w

oh2
;

ð24Þ

where j ¼ ru and b1ðj; hÞ and b2ðj; hÞ are defined by
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b1ðj; hÞ ¼ j11 cos 2h þ j12 þ j21

2

� �
sin 2h ð25Þ

and

b2ðj; hÞ ¼ �j11 sin 2h þ j12 þ j21

2

� �
cos 2h þ j21 � j12

2
: ð26Þ

Eq. (24) should be supplied with the boundary conditions at r ¼ 0 and r ¼
ffiffiffi
b

p
. We take them into account

by introducing a new unknown aðt; x; g; hÞ defined by

wðt; x; r; hÞ ¼ 1� g
2

� �2

aðt; x; g; hÞ; ð27Þ

where r2 ¼ bðð1þ gÞ=2Þ and g 2 ½�1; 1
. We require as well that aðt; x; g; h þ pÞ ¼ aðt; x; g; hÞ. Indeed, the
change of independent variable from r to g and the restriction on the dependence on h makes the function w
symmetric with respect to q. This is reasonable from the physical viewpoint (the two beads are indistin-

guishable) and implies the proper boundary condition ow=or ¼ 0 at r ¼ 0 (or g ¼ �1). The multiplier

ðð1� gÞ=2Þ2 ¼ ð1� jqj2=bÞ2 is introduced into (27) to prevent the spring force (3) from becoming infinite for

r ¼
ffiffiffi
b

p
, (or g ¼ 1). Although requiring that w vanishes at the boundary r ¼

ffiffiffi
b

p
seems the most natural

thing to do, we have found experimentally that this boundary condition leads to numerical instabilities.

Substituting the expression for w given by (27) into (24), we get

oa
ot

þ u � ra ¼ b1ðj; hÞL1a � b2ðj; hÞ
oa
oh

þ L0a; ð28Þ

where L0 and L1 are linear operators (independent of j) defined by

L0a ¼ � 4ðb� 4Þg
bkð1� gÞ2

a þ 2ðb� 8Þð1þ gÞ
bkð1� gÞ

�
þ 4

bk

�
oa
og

þ 4ð1þ gÞ
kb

o2a
og2

þ 1

kbð1þ gÞ
o2a

oh2
ð29Þ

and

L1a ¼ 4
1þ g
1� g

a � 2ð1þ gÞ oa
og

: ð30Þ
4.3. Time discretization of the Fokker–Planck equation

We are now in a position to construct a time marching scheme for the configurational part of the FP

equation that we will use instead of (17) in our fast solver. It should be a first order approximation in time

of the equation

oa
ot

¼ b1ðji; hÞL1a � b2ðji; hÞ oa
oh

þ L0a; ð31Þ

which is solved from t ¼ ti to t ¼ tiþ1, eaai and ai being set to ajt¼tiþ1
and ajt¼ti

, respectively. Introducing the
following scalar functions

kðjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2
11 þ ðj12 þ j21Þ2=4

q
; ð32Þ
uðjÞ ¼ 1

2
arctan

j12 þ j21

2j11

� �
ð33Þ
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and

kaðjÞ ¼
j12 � j21

2
; ð34Þ

we can rewrite (31) as

oa
ot

� kia
oa
oh

¼ �ki cosð2ðh � uiÞÞL1a þ ki sinð2ðh � uiÞÞ oa
oh

þ L0a; ð35Þ

where the upper indices i were added to k;u and ka defined by (32)–(34) to emphasize the fact that those
quantities are computed for the tensor ji that is updated at time t ¼ ti. In what follows, we denote explicitly

the dependence of a on t and h alone but it should be kept in mind that a is a function of g as well and that

all the quantities (a, k, u and ka) depend on the position in physical space as a parameter.

We will use a time discretization of (35) of Crank–Nicolson type

eaai h � 1
2
kiaDt

� �
� ai h þ 1

2
kiaDt

� �
Dt

¼ RHS; ð36Þ

where

RHS¼ � 1
2
ki cos 2ðhð �uiÞÞL1 eaaiðh

�
� 1

2
kiaDtÞ þ aiðhþ 1

2
kiaDtÞ

�
þ 1

2
ki sin 2ðhð �uiÞÞ oeaai

oh
ðh

�
� 1

2
kiaDtÞ þ

oai

oh
ðhþ 1

2
kiaDtÞ

�
þ 1

2
L0 eaaiðh
�

� 1
2
kiaDtÞ þ aiðhþ 1

2
kiaDtÞ

�
:

Appendix A provides a detailed derivation of (36). We note that this scheme would be a second order time

accurate approximation of (35) if the velocity gradient were evaluated at time tiþ1=2. However this is not the

case in view of the coupling with (18), and thus the resulting scheme (18)–(36) is only first order accurate in

time. In the rest of this section, we shall show that (36) can be represented under the same form as (21),

which enables us to apply the diagonalization technique outlined above.

Let P/ be the operator of rotation with the angle /, which is defined for an arbitrary function UðhÞ by

P/UðhÞ ¼ Uðh þ /Þ: ð37Þ

Applying Pui to both sides of Eq. (36) and noting that Pui commutes with L0, L1 and o=oh, we get

Pui�1
2
kiaDt
eaaiðhÞ � Puiþ1

2
kiaDt

aiðhÞ
Dt

¼ PuiRHS; ð38Þ

where

PuiRHS ¼ � 1

2
ki cosð2hÞL1 Pui�1

2
kiaDt
eaaðhÞ�

þ Puiþ1
2
kiaDt

aiðhÞ
�
þ 1

2
ki sin 2hð Þ o

oh
Pui�1

2
kiaDt
eaaðhÞ�

þ Puiþ1
2
kiaDt

aiðhÞ
�
þ 1

2
L0 Pui�1

2
kiaDt
eaaðhÞ�

þ Puiþ1
2
kiaDt

aiðhÞ
�
: ð39Þ

Let M1 be the matrix obtained by discretizing the operator

� cosð2hÞL1 þ sinð2hÞ o

oh
; ð40Þ

and M0 the matrix resulting from the discretization of the operator L0. Then, (38) can be written in the

discrete form as:
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Pui�1
2
kiaDt
eaai � Puiþ1

2
kiaDt

ai

Dt
¼ 1

2
M0 Pui�1

2
kiaDt
eaai

�
þ Puiþ1

2
kiaDt

ai
�
þ ki

2
M1 Pui�1

2
kiaDt
eaai

�
þ Puiþ1

2
kiaDt

ai
�
; ð41Þ

where we have denoted the unknowns discretized in configuration space by the same symbols as the non-

discretized ones. By rearranging (41) we get

1

Dt
I

�
� 1

2
M0 �

ki

2
M1

�
Pui�1

2
kiaDt
eaai ¼ 1

Dt
I

�
þ 1

2
M0 þ

ki

2
M1

�
Puiþ1

2
kiaDt

ai ð42Þ

or

eaai ¼ P1
2
kiaDt�ui I

�
� kiDtEq

��1ðRþ kiDtEqÞPuiþ1
2
kiaDt

ai; ð43Þ

with the matrices Eq and R defined by

Eq ¼
1

2
I

�
� Dt

2
M0

��1

M1; ð44Þ
R ¼ I

�
� Dt

2
M0

��1

I

�
þ Dt

2
M0

�
: ð45Þ

We now recognize that (43) has the form of (21) and thus it can be solved efficiently using the diago-

nalization technique described in Section 4.1. In what follows we term the time splitting scheme consisting

of (43) and (18) as the fast solver.

4.4. Discretization of the FP equation in configuration space

We shall search for an approximate solution aðt; x; g; hÞ to the FP equation (28) of the form

aðt; x; g; hÞ ¼
X1

i¼0

XNF

l¼i

XNR

k¼1

ai
klðt; xÞhkðgÞUilðhÞ ð46Þ

with

UilðhÞ ¼ ð1� iÞ cosð2lhÞ þ i sinð2lhÞ: ð47Þ

In the above expression, fhkðgÞg16 k6NR
are Lagrange interpolating polynomials based on the Gauss-

Legendre points gr (see the book of Canuto et al. [6] for more details) and have the property that

hkðgrÞ ¼ dkr k; r ¼ 1; . . . ;NR. Note that the set fgrg is chosen so that it does not include the points g ¼ �1

and g ¼ 1 since the boundary conditions there are already taken into account by (27). Only the Fourier

modes of even order are kept in (47) because of the symmetry of aðg; hÞ. The integrals with respect to g are
evaluated using the Gauss quadrature ruleZ 1

�1

f ðgÞdg �
XNR

i¼1

xif ðgiÞ; ð48Þ

where xi; 16 i6NR is a unique set of positive numbers such that the integration rule is exact for all

polynomials of degree 2NR � 1 or less on the interval ½�1; 1
. The integrals with respect to h can be com-

puted analytically.
To calculate the components of thematrixM0 that is the discretization of the operator L0 (29), we insert (46)

into (29), form its product with a test function hmðgÞUjnðhÞ and integrate over configuration space, to obtain



A. Lozinski, C. Chauvi�eere / Journal of Computational Physics 189 (2003) 607–625 617
ðM0Þuv ¼ dln
2ðb� 8Þð1þ gmÞ

bkð1� gmÞ

� 
þ 4

bk

�
h0kðgmÞ þ

4ð1þ gmÞ
kb

h00kðgmÞ

� 4gmðb� 4Þ
bkð1� gmÞ

2

 
þ 4l2

kbð1þ gmÞ

!
dkm

!
: ð49Þ

The mapping between the indices u; v ¼ 1; . . . ;NRð2NF þ 1Þ of the matrix M0 and i; j; k; l;m; n is
u ¼ ðm� 1Þð2NF þ 1Þ þ 2n� jþ 1 and v ¼ ðk � 1Þð2NF þ 1Þ þ 2l� iþ 1 for i; j ¼ 0; 1; k;m ¼ 1; . . . ;NR

and l ¼ i; . . . ;NF , n ¼ j; . . . ;NF .

Similarly, the discrete matrix M1, which is the discretization of (40), may be defined by

ðM1Þuv ¼ 2ð1
�

þ gmÞh0kðgmÞ � 4
1þ gm

1� gm

� �
dkm

�
Jiljn þ Kiljndkm; ð50Þ

where

Jiljn ¼
1

pð1þ dn0Þ

Z 2p

0

cosð2hÞUilðhÞUjnðhÞdh ð51Þ

and

Kiljn ¼
1

pð1þ dn0Þ

Z 2p

0

sinð2hÞU0
ilðhÞUjnðhÞdh: ð52Þ

The rotation operator (37) is implemented by using the expression

P/UilðhÞ ¼ cosð2l/ÞUilðhÞ � ð�1Þi sinð2l/ÞUilðhÞ: ð53Þ
4.5. Computation of the extra-stress

Having computed the pdf in x at time t, the extra-stress which will serve as a source term for the Stokes
equations (1) and (2) might be written as (see Eq. (6))

sðx; tÞ ¼
gp

k
bþ 4

b

� � 
� Iþ

Z
Dð0;

ffiffi
b

p
Þ
q� FðqÞwðt; x; qÞdq

!
: ð54Þ

Using (3) and (23), an expression for q� FðqÞ is

q� FðqÞ ¼ r2

1� ðr2=bÞ e� e ¼ b
1þ g
1� g

� �
e� e; ð55Þ

where e is the unit vector ðcos h; sin hÞ. With the help of (27), the integral appearing in (54) can now be

rewritten asZ
Dð0;

ffiffi
b

p
Þ
q� FðqÞwðt; x; qÞdq ¼

Z 1

�1

Z 2p

0

b2

32
ð1� g2Þaðt; x; g; hÞe� edhdg: ð56Þ

We then replace aðt; x; g; hÞ in the above integral by its expression (46), evaluate the integral with respect to

h analytically and the integral with respect to g numerically. Most of the terms vanish and we get the

following expressions for the three components of the extra-stress at each point ðt; xÞ:



618 A. Lozinski, C. Chauvi�eere / Journal of Computational Physics 189 (2003) 607–625
sxx ¼
gp

k
bþ 4

b

 
� 1þ pb2

32

XNR

i¼1

xi 1
�

� g2
i

�
2a0

i0

�
þ a0

i1

�!
; ð57Þ
sxy ¼
gp

k
bþ 4

b
pb2

32

XNR

i¼1

xi 1
�

� g2
i

�
a1
i1; ð58Þ
syy ¼
gp

k
bþ 4

b

 
� 1þ pb2

32

XNR

i¼1

xi 1
�

� g2
i

�
2a0

i0

�
� a0

i1

�!
; ð59Þ

where xi are the quadrature weights.

In the following section, we will apply this new scheme for a well-known benchmark problem in non-

Newtonian fluid mechanics and compare the results with the traditional stochastic Brownian simulations

that was described in Section 3.
5. Numerical experiments

5.1. A benchmark problem

Numerical results for viscometric flows can be found in [7], so in the present paper we only report

numerical results for a flow in a complex geometry. The problem of steady planar viscoelastic flow around a

cylinder confined in a channel has become popular recently as evidenced by the numerous publications
dealing with this benchmark problem and dating from the last three years or so (e.g. [9,10,12,21,23,26]).

Despite the fact that there is no geometrical singularity, strong shear flows near solid walls and strong

extensional flows in the wake of the cylinder make the numerical simulation a highly challenging task. We

choose the aspect ratio K ¼ R=H ¼ 1=2; where H is the half width of the channel and R is the radius of the

cylinder (see Fig. 2). The ratio of the solvent viscosity gs to the total zero shear-rate viscosity g ¼ ðgp þ gsÞ
was taken equal to 0:59 as is usually done by other authors, and the parameter b in (3) is taken equal to 20.

A global Deborah number for this problem may be defined by

De ¼ kU
R

; ð60Þ

where U is the average velocity of the fluid in the channel at entry. The Deborah number measures the

elasticity of the fluid and for non-trivial geometries, all numerical schemes break down at some point when

the Deborah numbers is increased.
Fig. 2. Cylinder radius R placed symmetrically in a 2D channel of half width H .



Fig. 3. Flow domain divided into 30 spectral elements for the level of discretization N ¼ 8.
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Periodic boundary conditions are used for the inflow and outflow of the channel for all quantities except

the pressure which is periodic up to a linear function. The total length of the channel is 40 times the cylinder

radius so that we can assume that the interaction of the cylinder with the other cylinders in the periodic

array is negligible. We impose no-slip conditions on the cylinder surface and on the channel wall. In order

to save in computational cost, we assume that the flow has y ¼ 0 as a plane of symmetry so that only half of

the domain needs to be considered. The problem is solved in this paper by dividing the flow domain into 30
conforming spectral elements and polynomial degrees ranging from N ¼ 8 to N ¼ 10 are used in the two

spatial directions. A typical mesh is shown in Fig. 3 for N ¼ 8 where the bold lines indicate the boundaries

of the spectral elements and the intersections of the thin lines the position of the quadrature points. We use

a SUPG spectral element-by-element method as described in [9] to solve the hyperbolic equations (10)

and (18). The time-step Dt is chosen equal to 0:01. For the direct simulations based on the FP equation

the iterations are stopped when the following convergence criterion is fulfilled for all collocation points

x 2 X:

juiþ1ðxÞ � uiðxÞj
Dt

6 10�4: ð61Þ

It would be impossible to satisfy the same criterion with the stochastic simulations because of the presence

of the random noise. The stochastic simulations are arbitrarily stopped instead at t ¼ 7.

The most popular quantity used for the comparison of numerical results is the drag factor F � on the

cylinder:

F � ¼ F

4pgU
; ð62Þ

where F is the drag on the cylinder

F ¼
Z p

0

��
� p þ 2gs

oux
ox

þ sxx

�
cos h þ gs

ouy
ox

��
þ oux

oy

�
þ sxy

�
sin h

�
Rdh: ð63Þ

However, as noted in numerous papers ([2,8,11,12], for example), such a quantity is not a good indicator of

the quality or accuracy of the solution. Therefore, we will not only give the value of the drag factor in this

paper but we will also plot the tensile elastic normal stress in the wake of the cylinder, this being the most

difficult flow region in which to resolve the solution convincingly.

5.2. Numerical results

5.2.1. Convergence with mesh refinement

Although the code did not blow up for Deborah numbers up to 1.5, it was only possible to prove

convergence with mesh refinement up to De ¼ 1:2. This is why we restrict ourselves to Deborah numbers

less or equal to 1.2 in what follows. Proving convergence with mesh refinement for higher Deborah

numbers would require exceedingly fine meshes.
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We first demonstrate convergence with mesh refinement in both configuration and physical spaces for

our highest Deborah number De ¼ 1:2. This is done by plotting the xx-component of the extra-stress along

the axis of symmetry ðjx=Rj > 1Þ and on the cylinder surface ðjx=Rj6 1Þ for the following two cases:

(1) The polynomial degree for the representation of the variables in physical space is kept at N ¼ 8 and the

resolution in configuration space is increased from ðNF ;NRÞ ¼ ð10; 20Þ to ðNF ;NRÞ ¼ ð12; 24Þ.
(2) The resolution in configuration space is set at ðNF ;NRÞ ¼ ð10; 20Þ and the polynomial degree in physical

space is increased from N ¼ 8 to N ¼ 10.

Figs. 4 and 5 show that convergence with mesh refinement is achieved in both cases (1) and (2),
respectively. Therefore, in the sequel we can restrict our numerical investigations by taking ðNF ;NR;NÞ ¼
ð10; 20; 8Þ.
Fig. 4. xx-component of the extra-stress along the axis of symmetry and on the cylinder surface for De ¼ 1:2 and two levels of dis-

cretization in configuration space.

Fig. 5. xx-component of the extra-stress along the axis of symmetry and on the cylinder surface for De ¼ 1:2 and two levels of dis-

cretization in physical space.
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5.2.2. Comparison between direct simulations and stochastic simulations

We now compare the direct simulations with their stochastic equivalent in terms of accuracy and CPU

cost. We first compare the drag factor as a function of time for the stochastic simulation when the number

of realizations (M in Eq. (15)) is set to 1000 and then 16,000. The results are shown in Fig. 6 for a Deborah

number De ¼ 0:8 and clearly, the stochastic solution converges towards the solution of the direct approach

as we increase the number of realizations. However for stochastic simulations, the rate of convergence is

very low (typically Oð1=
ffiffiffiffiffi
M

p
Þ). Note that for the two approaches, we have used the same resolution in

physical space ðN ¼ 8Þ. The same experiment is carried out in Fig. 7 but for a higher Deborah number
ðDe ¼ 1:2Þ and the conclusions remains unchanged.

Figs. 8 and 9 show the contour plots of the three components of the extra-stress (syy , sxy and sxx from top

to bottom) for the stochastic simulation (with 16,000 realizations) and the FP simulation, respectively, at a

Deborah number De ¼ 1:2. We can see that for the FP case, the three plots are reasonably smooth whereas

for the stochastic case, wiggles appear in the plot of the xx-component of the extra-stress.
Fig. 6. Comparison of the drag factor for stochastic and direct simulations at De ¼ 0:8.

Fig. 7. Comparison of the drag factor for stochastic and direct simulations at De ¼ 1:2.



Fig. 8. Contour plot of the three components of the extra-stress. Stochastic simulation.

Fig. 9. Contour plot of the three components of the extra-stress. Direct simulation.
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Table 1

Comparison of the CPU cost per time-step for the direct approach and for the stochastic approach

FP (fast solver) FP (slow solver) Stochastic – 1000 Stochastic – 16,000

3.3 198.0 18.0 285.0

Table 2

Drag factor F � computed on uniform meshes ðN ¼ 8;NF ¼ 10;NR ¼ 20Þ for different Deborah numbers

De 0.6 0.7 0.8 0.9 1.0 1.1 1.2

Drag factor 8.8941 8.7729 8.6776 8.6008 8.5384 8.4865 8.4429

Fokker–Planck simulation.
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We now turn our attention to the comparison of the CPU cost of the different approaches. Table 1 shows

the average CPU time per time-step for the solution of the FP equation by the fast solver ()(18)–(43) with

ðNF ;NR;NÞ ¼ ð10; 20; 8Þ, for the slow solver (17,18) with the same NF , NR and N and for the stochastic

simulations (10) and (11) using 1000 and 16,000 realizations. Results are reported in seconds and the test

was made on a PC with a Pentium IV 1.5 GHz processor. We see that the fast solver introduced in this
paper produces a speedup of a factor 60 compared to the slow solver of [7]. The direct simulations using the

fast solver are about 5.5 times faster than the stochastic simulation with a low number of realizations and

up to 86 times faster for the case with 16,000 realizations. Because of the noise in the stochastic solution, in

both cases, the direct approach is always more accurate.

Lastly we report in Table 2 the values of the drag factor on the cylinder as a function of the Deborah

number for the direct simulation. To the author�s knowledge, these values have not been available in the

literature so far. The solutions of stochastic simulations are too noisy (see Figs. 6 and 7) to give an accurate

average value of the drag factor.
6. Conclusions

In this paper, we have introduced a fast solver for the Fokker–Planck equation applied to viscoelastic

flows calculations. The efficiency of the proposed solver was demonstrated by solving the benchmark

problem of the flow around a cylinder constrained to lie between two parallel plates. Comparisons with

traditional stochastic Brownian simulations for the 2D FENE model as well as our previous approach [7]
have shown the advantages of this new method in terms of accuracy and efficiency. The ideas presented in

this paper can be generalized to 3D FENE models and it is presently under investigation.
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Appendix A

In this appendix, we report the technical details which allow us to write (36). We assume that the

function aðt; hÞ (the arguments x and g have been omitted for better clarity) is continuously differentiable

with respect to t and h so that using Taylor series around ðti; hÞ, we have
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aðtiþ1
2
; hÞ ¼ a ti

�
þ Dt

2
; h

�
¼ aðti; hÞ þ

Dt
2

oa
ot

ðti; hÞ þOðDt2Þ; ðA:1Þ
a ti

�
þ Dt; h � 1

2
kiaDt

�
¼ aðti; hÞ þ Dt
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1

2
kiaDt
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oh

ðti; hÞ þOðDt2Þ; ðA:2Þ

and

a ti; h
�

þ 1

2
kiaDt

�
¼ aðti; hÞ þ

1

2
kiaDt

oa
oh

ðti; hÞ þOðDt2Þ: ðA:3Þ

We now subtract the half sum of the last two equations from the first one to obtain

aðtiþ1
2
; hÞ ¼ 1

2
a tiþ1; h

��
� 1

2
kiaDt

�
þ a ti; h
�

þ 1

2
kiaDt

��
þOðDt2Þ: ðA:4Þ

Differentiating this last equation with respect to h, we also have

oa
oh

ðtiþ1
2
; hÞ ¼ 1

2

oa
oh

tiþ1; h

��
� 1

2
kiaDt

�
þ oa
oh

ti; h
�

þ 1

2
kiaDt

��
þOðDt2Þ: ðA:5Þ

Similarly we use Taylor series of the terms aðtiþ1; h � 1
2
kiaDtÞ and aðti; h þ 1

2
kiaDtÞ around the point ðtiþ1

2
; hÞ

to obtain
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� 1
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�
¼ a tiþ1

2

�
þ Dt

2
; h � 1

2
kiaDt

�
¼ aðtiþ1

2
; hÞ þ Dt

2

oa
ot

ðtiþ1
2
; hÞ � 1

2
kiaDt
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and

a ti; h
�

þ 1

2
kiaDt

�
¼ a tiþ1
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� Dt

2
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kiaDt
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Subtracting (A.6) from (A.7) and dividing by Dt gives

oa
ot

ðtiþ1
2
; hÞ � kia

oa
oh

ðtiþ1=2; hÞ ¼
a tiþ1; h � 1

2
kiaDt

� �
� a ti; h þ 1

2
kiaDt

� �
Dt

þOðDtÞ: ðA:8Þ

We now evaluate (35) at t ¼ tiþ1
2
, use the relations (A.4), (A.5), (A.8), neglect the terms of order OðDtÞ and

denote similarly to (17) eaaiðhÞ ¼ aðtiþ1; hÞ and ai ¼ aðti; hÞ to get (36).
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