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Abstract

In this paper, we introduce a new method for solving efficiently the Fokker—Planck equation arising in the simu-
lation of dilute polymeric solutions. For a two-dimensional FENE (Finitely Extensible Nonlinear Elastic) model, the
structure of the Fokker—Planck equation is used to design a fast solver. The resulting equations are discretized with a
spectral/spectral element method. Application of the method to flow of a FENE fluid past a confined cylinder dem-
onstrates readily the advantages of the proposed scheme over traditional stochastic simulations.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper, we are concerned with the simulation of flows of dilute polymeric solutions in complex
geometries. The polymeric molecules are represented through kinetic theory, in which case the solvent is
treated as a viscous continuum which acts on the macromolecules through thermal fluctuations and viscous
drag. One of the simplest kinetic theory models represents the polymeric molecules by dumbbells which
consist of two beads connected by a spring (see [3]). In this approach, the statistics of the configuration
vector q determining the direction and the elongation of the spring have to be computed. Kinetic theory
provides a partial differential equation (the Fokker—Planck (FP) equation ') for the probability density
V(t,Xx,q) of q and an expression for the polymeric extra-stress t in the form of the expectation of certain
functions of q. One can also obtain an Ito stochastic differential equation for the random process q, which is
formally equivalent to the FP equation. For some polymeric models, it is possible to derive a constitutive
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equation for the extra-stress and therefore bypass the resolution of equations describing the polymer at a
microscopic level (the interested reader can find in [22] an extensive review of numerical methods well suited
for models with closed-form constitutive equations of differential and integral type). However, such models
are usually unable to predict certain complex behaviour of polymeric fluids, such as the hysteresis phe-
nomenon, for example [24].

One is therefore led to construct efficient numerical techniques to simulate models for which no con-
stitutive equation exists. One can start from the stochastic differential equation for q, introduce a large
number of pseudo-random vector fields q,, (typically several thousand or possibly several hundred when
variance reduction techniques are used, see [4,5]) and solve for each of them a partial differential equation
that can be discretized by finite elements or any other numerical technique (CONNFFESSIT approach, see
[20]). All this must be coupled with the momentum and continuity equations for the velocity and pressure.
It is easy to see that such a technique is extremely expensive, even in one of its most efficient versions, the
Brownian configuration fields method [17].

One can try to alleviate the three main disadvantages of the Brownian configuration fields method,
which are large CPU cost, huge memory requirements and the presence of statistical noise in the computed
polymeric stress, by solving directly the FP equation for ¥(¢,x,q) instead of the stochastic differential
equation for q. This is what we will do in this paper. Note that the method presented here is well suited only
for polymeric models having low dimensional configuration space. Indeed, in the case of more complex
models like the Rouse chain consisting of N > 3 beads and N — 1 springs, the probability density should be
solved in a high dimensional space (¢,x,q,...,qy_,) instead of (¢,x,q), making the solution of the FP
equation hardly tractable.

A review of the literature reveals that very little has been done in order to advocate this approach, mainly
due to the lack of efficient numerical techniques to solve the FP equation. Starting with the pioneer work of
Warner in 1972 [28], the FP equation was used there to solve the steady-state shearing flow and small-
amplitude oscillatory shearing flow of a FENE fluid. It was only 13 years later, in 1985, that Fan [13]
improved the original idea of Warner by requiring that the probability density function be smooth at the
origin, leading to more accurate results. The dilute multibead-rod model was the model of choice of Fan in
1989 in a series of two papers [14,15]. The second paper is, to our knowledge, the first attempt in the
published literature to use the FP equation for flows in complex geometries. Although simplifying as-
sumptions had to be made (convective terms neglected in the FP equation), the computational difficulty at
that time must not be underestimated. In a recent work by a group in MIT [1], the start-up of steady shear
flow for dilute solutions of rigid rod-like macromolecules was also treated with the FP equation using
Daubechies wavelets for the discretization. In [19], this method was used to simulate the dynamics of both
the rigid dumbbell model and the Doi model for monodomain liquid crystalline polymers in a complex flow
environment (see also [25]). For the numerical simulations of concentrated polymer solutions, the interested
reader is referred to the recent paper of Lozinski et al. [18] for the details.

In this paper, we choose the FENE dumbbell model [28] of dilute polymer solutions. No constitutive
equation exists for this model. Contrary to [18], we use here an implicit time-marching for the FP equation
that enables us to weaken significantly the stability restriction on the time-step. The first version of our
method has been presented in a short paper [7]. In the present paper, we use some properties of the FP
equation to reduce significantly the computational cost. We restrict ourselves here to planar flows and we
assume, for the sake of simplicity, that the dumbbells lie also in the plane of the flow. This is not a
physically reasonable assumption a priori, and we use it primarily to illustrate our numerical method, which
can be extended to three-dimensional FENE dumbbells in a future work. We note however that using 2D
FENE dumbbells does not deteriorate significantly the predictions of the polymer stress in shear flows [7].

The paper is organized as follows. The next section is a brief description on how dilute polymeric liquids
may be modelled. Section 3 presents in more detail the stochastic approach and the discretization of the
resulting equations. A novel numerical scheme for the FP equation, which leads to a fast solver for this
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equation is then presented in Section 4. Then, in Section 5 we demonstrate the efficiency of our numerical
scheme by solving the benchmark problem of the flow past a cylinder in a channel and compare our results
with more conventional stochastic simulations and the method of [7]. Finally, in Section 6 we state some
conclusions.

2. Problem description

We consider a solvent, which is assumed to be incompressible and isothermal, and we restrict ourselves
to the case of inertialess flows (zero Reynolds number). For such a fluid, the mass and momentum con-
servation equations take the form of the Stokes system that can be written as

0=—-Vp+24V-e(u)+ V-1, (1)

V-u=0, (2)

where u denotes the fluid velocity, p is the pressure, 7 is the polymeric contribution to the Cauchy stress
tensor, &(u) =4 (Vu+ Vu') is the rate-of-strain tensor and #j is the solvent viscosity.

In this paper, we follow the simplest micro-mechanical approach to model the polymer molecules in a
dilute solution (the dumbbell model), in which the polymers are represented by two beads connected by a
spring (see Fig. 1) and the configuration vector q(¢) describes the orientation and the elongation of such
a dumbbell as it moves along its trajectory x(¢). The force of the spring is governed by some law that should
be derived from physical arguments. We choose here the popular FENE model, in which the maximum
extensibility of the dumbbell is fixed at some value determined by the dimensionless parameter b and the
spring force, after some scaling, takes the simple form

_ q
T ) ¥

where both F and q are dimensionless vectors.
The configuration vector q(z,x) of a dumbbell located at x at time ¢ satisfies the following stochastic
differential equation (see [20] for details):

datx.) i, ) - Va0 = (Futx,-at.0) 2 Fat) o+ o/ Tawes.o, @
x2 A
Q)
X(t)
0 X

Fig. 1. Description of a single dumbbell placed in the fluid in X(7).



610 A. Lozinski, C. Chauviere | Journal of Computational Physics 189 (2003) 607-625

where (Vu),; = 0u;/0x;, 4 is the relaxation time of the fluid, W(x,?) is the Wiener random process that
accounts for the Brownian forces acting on each bead. Eq. (4) should be understood as the It6 ordinary
stochastic differential equations along the particle paths since the dumbbells’ centres of mass are supposed
to follow the particles of the solvent fluid.

Alternatively, one can describe the dynamics of polymers in terms of the probability density function
(pdf) ¥ (2,x, q) of the random process q(#, x) that can be interpreted as follows: (¢, x, q)dq is the probability
that a dumbbell at position x and at time # is to be found with the configuration vector in the box [q, q + dq].
As is well known (see [20, Section 3.3]), every Ito stochastic differential equation can be associated with the
partial differential equation (the FP equation) for the pdf. In particular, Eq. (4) of the FENE dumbbell
model, implies the following FP equation for /(,x,q)

0 I 1
6—lf+u-Vlﬁ+Vq' ((Vu-q—ﬁF(q))W) ZﬁAqlﬂy (5)

where we use the subscript q for operators acting in configuration space and no subscript for operators
acting in physical space.

Once the statistical information about the distribution of q is known, the extra-stress tensor z(¢,X)
(which is used in the source term of the momentum equation (1)) can be computed by the Kramers ex-
pression (see [3, p. 69])

o0 =P 1y a0 @ Flax, ), (©

where the symbol ® denotes the tensor product of two vectors and E(+) is the expectation. The prefactor in
(6) is chosen so that the viscosity in the linear regime (low shear rates) is equal to 5, + n,, (for the 2D case).
The parameter n, is referred to as the zero shear-rate polymeric viscosity.

The two different (although formally equivalent) approaches described above lead to different numerical
methods. We shall present stochastic numerical simulations based on Eq. (4) in the following section.
Section 4 will be devoted to the direct solution of the FP Eq. (5). Note that in both cases, the velocity
gradient is calculated at each time-step and at every grid point from the latest known velocity obtained
as a solution to (1) and (2), so we can suppose in the sequel that the velocity field and its gradient are
given.

3. Stochastic simulation (Brownian configuration field method)
3.1. Discretization of the stochastic equation

Denoting the discrete times 1Az by ¢, the properties of the Wiener process (see [16], for example) imply
W(t) = 0 and

W(t) = W(ti_1) + VAIAW (), (7)

where AW(#;) are mutually independent random vectors having probability distribution N(0, 1).
Using a simple backward Euler scheme for the time discretization of (4), we obtain the following sto-
chastic partial differential equation:

q(Xa ti+1) B q(Xa ti)
At

+u(x,t) - Vq(x, 1) — Vu(x, 6)q(X, t;41) + %F(q(x7 ) = iAW(t,«). (8)
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Note that the increments of the discrete Wiener process in (8) do not depend on x although the original
stochastic differential equation (4) assumes an independent Wiener process on each particle path. We can
afford this simplification since we are interested only in some averages of random vectors q(x, #;). This idea is
the basis of the Brownian configuration field method proposed in [17] (see also [27]), and it allows us to reduce
drastically the computational cost as well as the random noise in averaged quantities like the extra-stress.

When a Monte-Carlo approach is used for solving (8) a large number of pseudo-random vectors
{AW,,(#)}, < < are generated and Eq. (8) has to be solved M times to compute the realizations of q (also
known as configuration fields) {q,, (X, #1)}, <, <, for each AW,,(#,) at the right-hand side. Note that the
vectors AW,,(¢;) are mutually independent in time, therefore a new set of pseudo-random numbers needs to
be generated at each time-step. Initially, the fluid is at rest so that the equilibrium extra-stress tensor must
be zero. This is done by generating M initial pseudo-random vectors with the following distribution (for the
2D case):

N
(@) =22 (1—%) | ©)

To prevent the norm of the vectors q,, from exceeding v/b that can result in divergence of the scheme, one
can either use rejections techniques or treat the F(q) term in an implicit way (see [20, Section 4.3.2]). We
implement this latter idea using a time splitting technique for Eq. (8):

Q. 5) _A?m(x’ ") 4 u(x, ) - VG, (x,4) =0, (10)
qm(x7[l+1) - ,(\im(xati) l — a A )L
At +2)VF(qm(Xati+l)) - Vu(x,t,-)qm(x,t,-) + }VAIAWM(ti). (11)

The first equation should be solved by a numerical method appropriate for hyperbolic PDEs and (11) can
be solved independently at every grid point. To see that this splitting prevents the norm of the vectors q,,
from exceeding v/b, we rearrange (11) and use (3) to arrive at

1 1 1
(At+2i 1 - (|qm(x,t[+1)|2/b)>qm(x7ti+1) =su(X, 1), (12)

where

q t; - 1
S(X,1;) = qm(AX; ) + Vu(x, )4, (x, 1) + ,/EAWM(@)

is a known vector since q,(x,#) has been computed from Eq. (10). We put s, =|s.(X,#)| and
qm = |q,,(X, t:+1)| and derive from (12) the cubic polynomial equation for g,

At
7 — Ats,q’ —b<ﬂ+ 1>qm+Atsmb:0. (13)

This equation can be shown to possess one root that satisfies 0 < ¢,, < v/b. Having determined this root, the
configuration vector q,,(X, #;+1) is simply

11 1 -
q, (X, lir1) = (Kt+2_im> S (X, 7;). (14)
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3.2. Computation of the extra-stress

Having computed a large number of realizations {q,,(x,#)}, ., <, that experience different uncorrelated
Wiener processes {W,(£)}, <, <, as described above, we are in position to determine the polymeric extra-
stress T which will then be used as a source term for Eq. (1). We use a straightforward approximation to (6)
that is given by

t(x, 1) :%¥<_1+$ qu(x,t,)®F(qm(x,ti))>. (15)

However, computing the extra-stress with (15) will give solutions that converge at a slow rate O(1/v/M)
typical of stochastic simulations. Variance reduction techniques make it possible to reduce the noise level
[5]; however, the efficiency of such techniques may be less effective as the Deborah number increases [4]. In
the following section, we will see how this can be avoided by considering an approach based on the direct
solution of the FP equation (5).

4. Direct simulation (FP equation)
4.1. The basic idea

In this approach, we seek the pdf y(¢,x,q) by solving (5) directly. But first, we give the main ideas that
will be developed in the following sections. For reasons that will be explained later we will use a variable
o(t,x,q) instead of Y (z,x,q). The equation for a(z,x,q) can be formally rewritten as

oo, Ouy Ou; Ou,

— 4 Ao B, C,a Do =0, 16

o1 + +— o, +— o, +— o, o= (16)
where Ay =u -V is a linear operator acting only in physical space whereas By, C4 and D, are linear op-
erators acting only in configuration space. Therefore, (16) lends itself to a time splitting, which, for a first
order backward Euler method leads to

&i — OCi aul ~; 6u1 ~i auz
—B,o +—C,a +—D,a' =0, 17
A o B g, G gy P (17)
ot —F _
T4 AT =0. 18
A A (18)

Doing so, Eq. (17) is first solved in configuration space for the auxiliary variable &', separately at every grid
point of physical space. It is then injected into Eq. (18), which should be solved in physical space in a similar
way to Eq. (10). Although the scheme (17) and (18) can be solved directly as was done in [7], such an
approach might be quite expensive for non-trivial geometries. To see that, we note that after discretization
and keeping the same notations for the discretized and continuous operators, the discrete solutions of (17)
and (18) are, respectively,

O CRVILE I N A (19)
61 4 ze 4 6x1 4 ’

= (I+ AtA) & (20)



A. Lozinski, C. Chauviere | Journal of Computational Physics 189 (2003) 607-625 613

We note that (I+ AtAX)f1 is the same operator for all the components of o in configuration space and
therefore it can be computed once and applied to all of them. On the other hand, although (19) is solved
only in configuration space, the coefficients which multiply B,, C, and D, vary in physical space. Fur-
thermore, those coefficients change with time and so it is not possible to compute and store

6u1 6u1 auz !
I+At| —By+— —D,
( + [[axl q+6xch+6x1 q:|>

once for all and a linear system should be solved at every grid point at each time-step. We will term the
scheme (17) and (18) the “‘slow solver’” in what follows. The following paragraph gives the outline of the
fast solver.

As will be shown in the following subsections, one can construct a time discretization for the configu-
rational part of the FP equation, which can be used instead of (17) and which can be written, after dis-
cretization, in the form

& = Fy(1 + kAE,) ' Gyt (21)

where the coefficient & varies in physical space and E, is a constant matrix. Fq and G4 are some matrices
varying in physical space, but such that a matrix—vector product with them can be computed approximately
with the same (or smaller) computational price as a matrix-vector product with a constant matrix. What is
important here, is that instead of having three coefficients varying in physical space (namely Ou;/0x,
Ouy /0x, and Ou,/0x;), we now have only one (namely k), and this allows us to solve (21) efficiently. To see
that, we diagonalize E,; more specifically we call D the diagonal matrix formed with the eigenvalues of E,.
Then, there exists an invertible matrix P (formed by the eigenvectors of E,) such that E, = PDP ! and we
can rewrite (21) as

& = Fy(PP~' + kAPDP ') ' G’ = F,P(I1+ kAD) 'P'G o' (22)

We can compute the matrices P, P~' and D once for all. Even if k varies in physical space, (I + kArD) is a
diagonal matrix which is cheap to invert. Assume a size N for the matrices appearing in (19) or (22) and that
these matrices are full. Solving (19) would require the solution of a linear system at each time-step and each
grid point in physical space so the cost would be O(N?) per time-step and grid point. On the other hand, &’
obtained by (22) is the result of matrix—vector multiplication with F P and P! Gy, so the cost would only be
O(N?) under the hypothesis on F, and G, mentioned above.

4.2. The Fokker—Planck equation in polar coordinates

The norm of the configuration vectors cannot exceed /b for the FENE model, hence the pdf should be
defined in the disc |g| < v/b. Therefore, it seems natural to use polar coordinates (r,0) to represent q as

q1 =rcosO, g =rsinf with r € [0,vb[ and 0 € [0,2x]. (23)

We give now a detailed expression of (5) in variables (r, 0):

o - o o 1 [ b 1\oy B 1y 1 oy
o T VY = b 0) 50 = ba(s,0) 5+ 57 (b P r) o b=y Vi T o
(24)

where ¥ = Vu and b,(k, 0) and b,(k, 0) are defined by
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bi(xk,0) = Ky cos20 + (@) sin 20 (25)

and
K12

b2(“>0):—1€115in29+ (@)00529_’_’{21%.

Eq. (24) should be supplied with the boundary conditions at » = 0 and » = v/b. We take them into account
by introducing a new unknown o(z,x, 7, 0) defined by

(26)

Wit x,r,0) = (12—’7> o(t,x, 1, 0), (27)

where 72 = b((1+1#)/2) and 5 € [—1,1]. We require as well that «(z,x,7,0 + 1) = a(t, x,17,0). Indeed, the
change of independent variable from r to n and the restriction on the dependence on 6 makes the function
symmetric with respect to q. This is reasonable from the physical viewpoint (the two beads are indistin-
guishable) and implies the proper boundary condition 0y/0r =0 at r =0 (or n = —1). The multiplier
(1 =n)/2)> = (1 —|q|*/b)’ is introduced into (27) to prevent the spring force (3) from becoming infinite for
r=+/b, (or n = 1). Although requiring that i vanishes at the boundary » = v/b seems the most natural
thing to do, we have found experimentally that this boundary condition leads to numerical instabilities.
Substituting the expression for y given by (27) into (24), we get

O O

a+u Vo =b(k,0)Lio — by(xk, 9)@+Looc, (28)
where Ly and L; are linear operators (independent of k) defined by
4(b —4)y 2(b—8)(1+n) 4\« 4(1+n) o 1 Q%o
T ot o) o o T a0 )
and
Llu:4i%2a—2(l+n)g—z. (30)

4.3. Time discretization of the Fokker—Planck equation

We are now in a position to construct a time marching scheme for the configurational part of the FP
equation that we will use instead of (17) in our fast solver. It should be a first order approximation in time
of the equation

O , . O

— = bi(K',0)Lioe — by(K',0) — + Lo, 31

5, = 016, O)Lia = ba (k' 0) =5 + Lo (31)
which is solved from ¢t = ¢ to t = t,,,, &' and o being set to oc\t:tl_+l and «f_, , respectively. Introducing the
following scalar functions

k() = /K3, + (e + 101) /4, (32)
(k) = % arctan (%) (33)
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and

we can rewrite (31) as

% - k;% = —k'cos(2(0 — ¢'))Lio.+ k'sin(2(0 — ¢')) 20 + Lo, (35)
where the upper indices i were added to &, ¢ and k, defined by (32)-(34) to emphasize the fact that those
quantities are computed for the tensor ' that is updated at time ¢ = f,. In what follows, we denote explicitly
the dependence of o on 7 and 6 alone but it should be kept in mind that « is a function of n as well and that
all the quantities (o, k, ¢ and k,) depend on the position in physical space as a parameter.

We will use a time discretization of (35) of Crank—Nicolson type

o' (0 — Lk AL) — ol (0 + 1K A)

5 = RHS, (36)

where

RHS = —1k'cos (2(0 — ¢"))L (&' (0 — 3k, At) + of (0 + 1k, At))

. 0w . dot . I . . .
+ 1k sin (2(0 — (p))(ae (9—%k;At)+@(9+§k;At)) +5Lo (3 (0 S, A0) 4o/ (0 4 3K,A1).

Appendix A provides a detailed derivation of (36). We note that this scheme would be a second order time
accurate approximation of (35) if the velocity gradient were evaluated at time ¢,,,,. However this is not the
case in view of the coupling with (18), and thus the resulting scheme (18)—(36) is only first order accurate in
time. In the rest of this section, we shall show that (36) can be represented under the same form as (21),
which enables us to apply the diagonalization technique outlined above.

Let II, be the operator of rotation with the angle ¢, which is defined for an arbitrary function ¢(0) by

1, ®(0) = &(0+ ). (37)
Applying II, to both sides of Eq. (36) and noting that IT, commutes with Ly, L, and 9/00, we get
Hw'—%k;At&i(e) - H¢f+%k:;At°‘i(0)

= II,RH
o »RHS, (38)
where
[T, RHS = — 2 1 cos(20)L ( %(0) + 1T (9)) + Lk sin (29)E( 5 (0)
@ - 2 CoS 1 (z lk‘At (p+lk’Al‘ 2 S. 60 (z %kaAtOC
1
gy (0) ) + 3 Lo (T n3(0) + M p2(6) ) (39)

Let M; be the matrix obtained by discretizing the operator

0
—cos(20)L; + sin(20) — 30

and M, the matrix resulting from the discretization of the operator L;. Then, (38) can be written in the
discrete form as:

(40)
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IO, o — I a0 ] ki
@' =5k}, At @ 43k, At ~; i ~; i
2 At 2 = EMO (H(ﬂ;,%kgm(xl + H¢[+%kéAtal) + EM] (H(p[flikf,Atal + n(/]iJr%](LAtOCl) 5 (41)

where we have denoted the unknowns discretized in configuration space by the same symbols as the non-
discretized ones. By rearranging (41) we get

I R I T T ,.
(KII_EMO_EMI)HQL%H’A[OC = (EI—FEM()-FEMI)HW_*_%H;A[OC (42)
or
~i i -1 i i
o = H%k;Atf(p" (I — k AlEq) (R + k AlEq)H(P,'+%k2A[OC s (43)

with the matrices E, and R defined by

1 At N\
E, = 3 (I - ?M()) M, (44)
4
R— (1 _ AthO) <I n Ath()). (45)

We now recognize that (43) has the form of (21) and thus it can be solved efficiently using the diago-
nalization technique described in Section 4.1. In what follows we term the time splitting scheme consisting
of (43) and (18) as the fast solver.

4.4. Discretization of the FP equation in configuration space

We shall search for an approximate solution «(¢, X, 7, 0) to the FP equation (28) of the form

%, 0 = 30 D0 D 6 X)) (0) (46)
with
®,;(0) = (1 — i) cos(210) + isin(210). (47)

In the above expression, {A (1)}, <;<y, are Lagrange interpolating polynomials based on the Gauss-
Legendre points 5, (see the book of Canuto et al. [6] for more details) and have the property that
hi(n,) = 0 k,r =1,..., Ng. Note that the set {1, } is chosen so that it does not include the points n = —1
and 5 = 1 since the boundary conditions there are already taken into account by (27). Only the Fourier
modes of even order are kept in (47) because of the symmetry of a(y, 8). The integrals with respect to # are
evaluated using the Gauss quadrature rule

[ rondn=>-arm). (48)

where ;, 1 <i< Ny is a unique set of positive numbers such that the integration rule is exact for all
polynomials of degree 2Ny — 1 or less on the interval [—1, 1]. The integrals with respect to 0 can be com-
puted analytically.

To calculate the components of the matrix M that is the discretization of the operator Ly (29), we insert (46)
into (29), form its product with a test function #,,(17) @;,(0) and integrate over configuration space, to obtain
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My),, = 3 ((% g7 YAkt + )

4n,, (b —4) 472
- “ + = O |- 49
(bx(l—nm)z ib(1+1,) ™" @)
The mapping between the indices u,v=1,... ,Nx(2Nr + 1) of the matrix My and i,j,k,I,m,n is
u=m—-1)2Nr+1)+2n—j+1 and v=(k—1)2Nr+1)+2/—i+1 for i,j=0,1; k,m=1,... N

andl:i,...,NF,an,...,Np.
Similarly, the discrete matrix M, which is the discretization of (40), may be defined by

M = (200 0) = 4 722 )6 )+ Kiin (50)
where
1 2n
Jijm = (050w /0 cos(20)P;(0)P;,(0)do (51)
and
1 2n
Kijn = w05 0m) /0 sin(20) @, (0)®;,(0)do. (52)

The rotation operator (37) is implemented by using the expression

@, (0) = cos(21d)®;(0) — (—1)"sin(21d)®;(0). (53)

4.5. Computation of the extra-stress

Having computed the pdf in x at time ¢, the extra-stress which will serve as a source term for the Stokes
equations (1) and (2) might be written as (see Eq. (6))

n, (b+4
T(x,1) = - (T) (— I+ /D(o,ﬁ) q F(q)y(t, x,q)dq). (54)

Using (3) and (23), an expression for q ® F(q) is

r? 1+7y
Flq) =—+— =b[ —— 55
q®F(q) 1_(}’Z/b)e@Qe <1_”)e®e, (55)
where e is the unit vector (cos0,sin ). With the help of (27), the integral appearing in (54) can now be
rewritten as

1 2n b2
/ q4® FQW(t,x,q)dg = / / b (1 P)att,x,m, 0)e © ed0dy. (56)
D(0,v/b) S 32

We then replace a(¢, X, 7, 0) in the above integral by its expression (46), evaluate the integral with respect to
0 analytically and the integral with respect to # numerically. Most of the terms vanish and we get the
following expressions for the three components of the extra-stress at each point (¢, X):
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%b+4< b
Tox = -
Ao b

LS St —nf><z«?o+a?l>)7 5
32 P

My b+4 b K

T Ty 3 P (1 =)o, (38)

f"lb+4_ LbZNR (1.2 0 0
T”’_i 5 < 1—|—32 2 a),(l ni)(2ocl.0 ocil) , (59)

where w; are the quadrature weights.

In the following section, we will apply this new scheme for a well-known benchmark problem in non-
Newtonian fluid mechanics and compare the results with the traditional stochastic Brownian simulations
that was described in Section 3.

5. Numerical experiments
5.1. A benchmark problem

Numerical results for viscometric flows can be found in [7], so in the present paper we only report
numerical results for a flow in a complex geometry. The problem of steady planar viscoelastic flow around a
cylinder confined in a channel has become popular recently as evidenced by the numerous publications
dealing with this benchmark problem and dating from the last three years or so (e.g. [9,10,12,21,23,26]).
Despite the fact that there is no geometrical singularity, strong shear flows near solid walls and strong
extensional flows in the wake of the cylinder make the numerical simulation a highly challenging task. We
choose the aspect ratio A = R/H = 1/2, where H is the half width of the channel and R is the radius of the
cylinder (see Fig. 2). The ratio of the solvent viscosity 7, to the total zero shear-rate viscosity n = (1, + 1,)
was taken equal to 0.59 as is usually done by other authors, and the parameter 5 in (3) is taken equal to 20.
A global Deborah number for this problem may be defined by
De = & , (60)

R
where U is the average velocity of the fluid in the channel at entry. The Deborah number measures the
elasticity of the fluid and for non-trivial geometries, all numerical schemes break down at some point when
the Deborah numbers is increased.

H

Fig. 2. Cylinder radius R placed symmetrically in a 2D channel of half width H.
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Fig. 3. Flow domain divided into 30 spectral elements for the level of discretization N = 8.

Periodic boundary conditions are used for the inflow and outflow of the channel for all quantities except
the pressure which is periodic up to a linear function. The total length of the channel is 40 times the cylinder
radius so that we can assume that the interaction of the cylinder with the other cylinders in the periodic
array is negligible. We impose no-slip conditions on the cylinder surface and on the channel wall. In order
to save in computational cost, we assume that the flow has y = 0 as a plane of symmetry so that only half of
the domain needs to be considered. The problem is solved in this paper by dividing the flow domain into 30
conforming spectral elements and polynomial degrees ranging from N = 8 to N = 10 are used in the two
spatial directions. A typical mesh is shown in Fig. 3 for N = 8 where the bold lines indicate the boundaries
of the spectral elements and the intersections of the thin lines the position of the quadrature points. We use
a SUPG spectral element-by-element method as described in [9] to solve the hyperbolic equations (10)
and (18). The time-step Af is chosen equal to 0.01. For the direct simulations based on the FP equation
the iterations are stopped when the following convergence criterion is fulfilled for all collocation points
X €

u ™ (x) — W' (x)]

<107%.
= <10 (61)

It would be impossible to satisfy the same criterion with the stochastic simulations because of the presence
of the random noise. The stochastic simulations are arbitrarily stopped instead at ¢t = 7.
The most popular quantity used for the comparison of numerical results is the drag factor F* on the
cylinder:
ot 62)
4nnU

where F is the drag on the cylinder

F=/ —p+2m%+fxx cos 0+ | 1, Oy | Ot + Ty | sin 0 $RAO. (63)
0 Ox ox Oy

However, as noted in numerous papers ([2,8,11,12], for example), such a quantity is not a good indicator of
the quality or accuracy of the solution. Therefore, we will not only give the value of the drag factor in this
paper but we will also plot the tensile elastic normal stress in the wake of the cylinder, this being the most
difficult flow region in which to resolve the solution convincingly.

5.2. Numerical results

5.2.1. Convergence with mesh refinement

Although the code did not blow up for Deborah numbers up to 1.5, it was only possible to prove
convergence with mesh refinement up to De = 1.2. This is why we restrict ourselves to Deborah numbers
less or equal to 1.2 in what follows. Proving convergence with mesh refinement for higher Deborah
numbers would require exceedingly fine meshes.



620 A. Lozinski, C. Chauviere | Journal of Computational Physics 189 (2003) 607-625

We first demonstrate convergence with mesh refinement in both configuration and physical spaces for
our highest Deborah number De = 1.2. This is done by plotting the xx-component of the extra-stress along
the axis of symmetry (]x/R| > 1) and on the cylinder surface (Jx/R|< 1) for the following two cases:

(1) The polynomial degree for the representation of the variables in physical space is kept at N = 8 and the
resolution in configuration space is increased from (N, Nz) = (10,20) to (Ng, Nz) = (12,24).

(2) The resolution in configuration space is set at (Nz, Ng) = (10,20) and the polynomial degree in physical
space is increased from N = 8§ to N = 10.

Figs. 4 and 5 show that convergence with mesh refinement is achieved in both cases (1) and (2),
respectively. Therefore, in the sequel we can restrict our numerical investigations by taking (N, Nz, N) =
(10,20, 8).

o o

—— N~=10, N,=20, N=8
...... N=12, N =24, N=8

Txx
N W A OO O N ® ©

Fig. 4. xx-component of the extra-stress along the axis of symmetry and on the cylinder surface for De = 1.2 and two levels of dis-
cretization in configuration space.

s> =

——— N~10,N,=20, N=8
------ N=12, N=24, N=10

——

Txx
N w £ wm D ~ @ ©
 ERARE LAREN RARE Lamnd Ay

o A
eI

Fig. 5. xx-component of the extra-stress along the axis of symmetry and on the cylinder surface for De = 1.2 and two levels of dis-
cretization in physical space.
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5.2.2. Comparison between direct simulations and stochastic simulations

We now compare the direct simulations with their stochastic equivalent in terms of accuracy and CPU
cost. We first compare the drag factor as a function of time for the stochastic simulation when the number
of realizations (M in Eq. (15)) is set to 1000 and then 16,000. The results are shown in Fig. 6 for a Deborah
number De = 0.8 and clearly, the stochastic solution converges towards the solution of the direct approach
as we increase the number of realizations. However for stochastic simulations, the rate of convergence is
very low (typically O(1/y/M)). Note that for the two approaches, we have used the same resolution in
physical space (N = 8). The same experiment is carried out in Fig. 7 but for a higher Deborah number
(De = 1.2) and the conclusions remains unchanged.

Figs. 8 and 9 show the contour plots of the three components of the extra-stress (t,,, 7., and 1., from top
to bottom) for the stochastic simulation (with 16,000 realizations) and the FP simulation, respectively, at a
Deborah number De = 1.2. We can see that for the FP case, the three plots are reasonably smooth whereas
for the stochastic case, wiggles appear in the plot of the xx-component of the extra-stress.

H  eeeeeeas Fokker-Planck

Stochastic (1000 realizations)
Stochastic (16000 realizations)

Drag Factor
[ec]

75

o b b by b b b gl
1 2 3 4 5 6 7
time

Fig. 6. Comparison of the drag factor for stochastic and direct simulations at De = 0.8.
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Fig. 7. Comparison of the drag factor for stochastic and direct simulations at De = 1.2.
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Fig. 8. Contour plot of the three components of the extra-stress. Stochastic simulation.

Fig. 9. Contour plot of the three components of the extra-stress. Direct simulation.
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EizZalrison of the CPU cost per time-step for the direct approach and for the stochastic approach
FP (fast solver) FP (slow solver) Stochastic — 1000 Stochastic — 16,000
33 198.0 18.0 285.0
Table 2
Drag factor F* computed on uniform meshes (N = 8, Nr = 10, Ny = 20) for different Deborah numbers
De 0.6 0.7 0.8 0.9 1.0 1.1 1.2
Drag factor 8.8941 8.7729 8.6776 8.6008 8.5384 8.4865 8.4429

Fokker—Planck simulation.

We now turn our attention to the comparison of the CPU cost of the different approaches. Table 1 shows
the average CPU time per time-step for the solution of the FP equation by the fast solver ()(18)—(43) with
(Nr,Ng,N) = (10,20, 8), for the slow solver (17,18) with the same Nr, Ny and N and for the stochastic
simulations (10) and (11) using 1000 and 16,000 realizations. Results are reported in seconds and the test
was made on a PC with a Pentium IV 1.5 GHz processor. We see that the fast solver introduced in this
paper produces a speedup of a factor 60 compared to the slow solver of [7]. The direct simulations using the
fast solver are about 5.5 times faster than the stochastic simulation with a low number of realizations and
up to 86 times faster for the case with 16,000 realizations. Because of the noise in the stochastic solution, in
both cases, the direct approach is always more accurate.

Lastly we report in Table 2 the values of the drag factor on the cylinder as a function of the Deborah
number for the direct simulation. To the author’s knowledge, these values have not been available in the
literature so far. The solutions of stochastic simulations are too noisy (see Figs. 6 and 7) to give an accurate
average value of the drag factor.

6. Conclusions

In this paper, we have introduced a fast solver for the Fokker-Planck equation applied to viscoelastic
flows calculations. The efficiency of the proposed solver was demonstrated by solving the benchmark
problem of the flow around a cylinder constrained to lie between two parallel plates. Comparisons with
traditional stochastic Brownian simulations for the 2D FENE model as well as our previous approach [7]
have shown the advantages of this new method in terms of accuracy and efficiency. The ideas presented in
this paper can be generalized to 3D FENE models and it is presently under investigation.
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Appendix A

In this appendix, we report the technical details which allow us to write (36). We assume that the

function o(¢, 6) (the arguments x and # have been omitted for better clarity) is continuously differentiable
with respect to ¢ and 0 so that using Taylor series around (;,0), we have
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At At d
o(tiy1,0) = ( +7,0) =a(t;,0) + = > aa(t,,ﬁ)-i-O(At) (A1)
1. oot o s
o t;+At,0—§k;At _oc(t,,())+Ata (t,0) — —k’AtaH(t,-,O)+O(At ), (A.2)
and
1 . 1 oo
(104 SR = (6,0 + T8 5 (,0) + O(A). (A3)

We now subtract the half sum of the last two equations from the first one to obtain
1 1 1 .
OC(tiJr%’G) :z <OC <ti+l70 2klaAt) + O((thg—f—zk;At)) +O(Alz) (A4)
Differentiating this last equation with respect to 6, we also have

Ou 1 /O 1 . O 1
@(t”%’e):E(@Q’“’G_Ekzm) 69 (t,,0+ k’At)) +O(At2). (A.S)

Similarly we use Taylor series of the terms o(z;y1, 0 — 1 k. Ar) and a(t;, 0 + 1 k. At) around the point (z, 11:0)
to obtain

. At 1,
a<t5+1,0 EkaAt) :oc<ti+%+7,0—§kaA>

At 0o . Oa 5
= (H],H) > at(,+1,9) kAtaH(,Jr%,f))—i—O(At) (A.6)
and
1. At 1,
O‘(l‘h 0+ §kaAt> = d(tij% — 7 , 0+ EkaAt)
At Ou P )
= 213 0) 3 (13,0 + KA (1,0) + O(AP). (A7)
Subtracting (A.6) from (A.7) and dividing by Az gives
oo, ) o(tis1,0 — SkEAL) — a(t;, 0 + L KL Ar)
E(tH»%?H) ka 60( i+1/2)0) = At +O(At) (AS)

We now evaluate (35) at t = ¢, 11, use the relations (A.4), (A.5), (A.8), neglect the terms of order O(A¢) and
denote similarly to (17) &(0) = a(t;,1,0) and o = a(t;, ) to get (36).
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